

The Precious, the Semi-Precious, and the Ugly

Catherine Barrie Dogbone of the Week April 11, 2022

Gemstones

a mineral or petrified material that when cut and polished can be used as jewelry – Merriam Webster

- Measured in Carats (200 mg)
- Classification:
 - Precious
 - Semi-Precious

Ruby

Gemstones

a mineral or petrified material that when cut and polished can be used as jewelry

- Measured in Carats (200 mg)
- Classification:
 - Precious
 - Semi-Precious

Alexandrite

Topaz

Color

- Structure
- Impurities
- Radiation
- Light Source

ELECTRON TRAVEL

1. The Crystal Field Theory

- Transition metal compounds (malachite, almandine) idiochromatic
- Transition metal impurities (ruby, emerald, citrine, jade) allochromatic
- Color centers (amethyst, maxixe-beryl)
- 2. The Molecular Orbital Theory
 - Charge transfer (sapphire, iolite)
- 3. The Band Theory
 - Insulators (glass)
 - Conductors (metals)
 - Semiconductors (galena)
 - Doped semiconductors (diamond)
- 4. The Physical Properties Theory
 - Dispersion (Fire in diamond)
 - Scattering (moonstone, cat's eyes, stars)
 - Interference (iridescence, opal)
 - Diffraction (opal)

Structure

• Anisotropy \rightarrow Pleochroism

Impurities

Transition Elements

1 H Hydrogen	PERIODIC TABLE OF ELEMENTS									2 He							
3	4											5	6	7	8	9	10
Li	Be									Ne							
11	12	1										13	14	15	16	17	18
Na	Mg											AI	Si	Phosphorus	Sultur	Chlorine	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	Vanadium	Cr	Мп	Fe	Co	Ni	Cu	Zn	Ga	Germanium	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Iodine	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Tantatum	W	Re	Os	Ir	Platinum	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Francium	Ra	AC	Rf	Db Dubnium	Sg	Bh	Hs	Mt	Ds	Rg	Copernicium	Nh	Fl	Mc	Lv	TS	Og

Gem	Formula	Color	Origin of color
Ruby	Al ₂ O ₃	Red	Cr ³⁺ replacing Al ³⁺ in octahedral sites
Emerald	Be ₃ Al ₂ (SiO ₃) ₆	Green	Cr ³⁺ replacing Al ³⁺ in octahedral site
Alexandrite	Al ₂ BeO ₄	Red/Green	Cr ³⁺ replacing Al ³⁺ in octahedral site
Garnet	Mg ₃ Al ₂ (SiO ₄) ₃	Red	Fe ²⁺ replacing Mg ²⁺ in 8- coordinate site

www.scifun.org

		1 HPERIODIC TABLE OF ELEMENTS2 He
Impurities		Moture Moture Moture Moture 3 4 5 6 7 8 9 10 Li Be B C N O F Ne
		Lotter Approximation Lotter Lotter <thlotter< th=""> <thlotter< th=""> <thlot< th=""></thlot<></thlotter<></thlotter<>
	22 23 24 25 26 27 28 29 Ti V Cr Mn Fe Co Ni Cu	19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Cas Sc Ti V Cr Mn Fee Co Ni Cup ref Caser Sc Sc France
 Transition Elements 	Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper	37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Agg Cd In Sn Sb Te I Xe Materia Total Number
		55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn
		87 88 89 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Fr Ra Active Rf Db Sg Bh Hs Mt Ds Rg Cm Nh FI Mc Lv Ts Og Jacket Letter Letter Database Data

Gem	Formula	Color	Origin of color
Ruby	Al ₂ O ₃	Red	Cr ³⁺ replacing Al ³⁺ in octahedral sites
Emerald	Be ₃ Al ₂ (SiO ₃) ₆	Green	Cr ³⁺ replacing Al ³⁺ in octahedral site
Alexandrite	Al ₂ BeO ₄	Red/Green	Cr ³⁺ replacing Al ³⁺ in octahedral site
Garnet	Mg ₃ Al ₂ (SiO ₄) ₃	Red	Fe ²⁺ replacing Mg ²⁺ in 8- coordinate site

www.scifun.org

Crystal Field Theory

Impurities

- Color Centers Wrong Valence
- Radiation also creates this same color phenomenon

The Hope Diamond

- 45.52 carat blue diamond
 - Surprisingly light
- Owned by prominent figures such as King Louis XIV, XV, XVI
- Cursed
 - Suicide
 - Hanged
 - Thrown from precipice
 - Murdered by lover
 - Torn to pieces by wild dogs
 - Torn to pieces by French mob

State Gemstones - Maryland

State Gemstones - California

- Benitoite BaTi(Si₃O₉)
- Found in San Benito, California
 - Only mine to produce gemstone quality
 - ~\$7,000/carat

Monetary Value

- Blue Diamonds are the most expensive (\$3.93 Million/Carat)
- Painite 2005 Guinness World Record for "rarest" gemstone on earth
 - Runs for 50 60 K PER CARAT
 - Largest stone found is 213.52 Carats
 - THAT'S 10.68 MILLION DOLLARS

Can we increase monetary value?

- Of *quartz* we can!
- Almost all gems go though "post-processing"
- 1. Bleaching
- 2. Surface coating
- 3. Dyeing
- 4. Heat Treatment
- 5. HPHT
- 6. Irradiation

Heat Treatments

- Diamonds are more valuable colorless!
 - Nitrogen is often an unwanted impurity
 - GE: 1800 C + 50,000 atm turns the diamond from brown to clear!

+ 180,465 more

Heat Treatments

- Diamonds are more valuable colorless!
 - Nitrogen is often an unwanted impurity
 - GE: 1800 C + 50,000 atm turns the diamond from brown to clear!
- Corundums are frequently heat treated around ~1500 C
 - There's been "recent" studies of introducing impurities during treatment to further enhance color
- They can distinguish natural vs treated stones via Raman photoluminecesce

Conclusions

- Value of gemstones due to rarity and looks
- Natural isn't necessarily better
- Maryland's State Gemstone is "embarresing"

